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Abstract:  X-ray fluorescence tomography is based on the detection of
fluorescence x-ray photons produced following x-ray absorption while
a specimen is rotated; it provides information on the 3D distribution of
selected elementals within a sample. One limitation in the quality of sample
recovery is the separation of elemental signals due to the finite energy
resolution of the detector. Another limitation is the effect of self-absorption,
which can lead to inaccurate results with dense samples. To recover the
true elemental map, we combine x-ray fluorescence detection with a
second data modality: conventional x-ray transmission tomography using
either absorption or phase contrast. By using these combined signals in a
nonlinear optimization-based approach, we obtain an improved quantitative
reconstruction of the spatial distribution of most elements in the sample.
Compared with single-modality inversion based on x-ray fluorescence
alone, this joint inversion approach reduces ill-posedness and results in
improved elemental quantification and better correction of self-absorption.

© 2016 Optical Society of America

OCIS codes: (340.7460) X-ray microscopy; (340.7440) X-ray imaging; (110.3010) Image re-
construction techniques; (100.6950) Tomographic image processing.
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1. Introduction

The use of characteristic x-ray emission lines to distinguish between different chemical ele-
ments in a specimen goes back to the birth of quantum mechanics [1]. X-ray fluorescence can
be stimulated by energy transfer from electron or proton beams, but the best combination of
sensitivity and minimum radiation damage is provided by using x-ray absorption [2—4] for this
purpose. This is usually done in a scanning microscope mode, where a small x-ray beam spot
is raster-scanned across the specimen while x-ray photons are collected by an energy disper-
sive detector that provides a measure of the energy of each emitted photon [5]. Following early
demonstrations [6], x-ray fluorescence microscopy is now commonplace in many laboratories
and in particular at a wide range of synchrotron radiation light source facilities worldwide. Be-
cause the x-ray beam from synchrotron light sources is usually linearly polarized in the horizon-
tal direction, the energy dispersive detector is usually located at a position 90° in the horizontal
from the incident beam so as to be centered on the direction of minimum elastic scattering as
shown in Fig. 1 (other energy dispersive detector positions can be used [7], with various rela-
tive merits [8]). Because the depth of focus of the x-ray beam is usually large compared to the
specimen size, one can treat the incident x-ray beam as a pencil beam of constant diameter and
thus rotate the specimen to obtain a set of 2D projections from each x-ray fluorescence line for
tomographic reconstruction [9,10], even for elements present at low concentration such as trace
elements in biological specimens [11].

A common approach is to collect the photon counts within predetermined energy windows,
or to use per-pixel spectral fitting [12], so as to get immediate elemental concentration maps.
These maps are then used in conventional tomographic reconstruction schemes, such as fil-
tered back projection and iterative reconstruction techniques [13, 14]. A more recent approach
has been to use a penalized maximum likelihood estimation method on the per-pixel spectra
recorded by the energy dispersive detector for improved quantification and elemental separa-
tion [15]; we refer to this as full-spectrum analysis. A separate complication involves the cor-
rection of fluorescence self-absorption, where characteristic x-ray fluorescence photons emitted
from one voxel in a 3D specimen might suffer absorption in specimen material that lies between
this voxel and the energy dispersive detector. There have been interesting approaches to correct
for self-absorption as will be discussed below, but these approaches have not been combined
with full-spectrum analysis. In addition, phase contrast dominates over absorption contrast in
transmission imaging using multi-keV x-rays [16, 17] and it can provide a superior imaging
signal for the alignment of x-ray fluorescence tomography datasets when rotation stage run-out
error is significant [18]. For these reasons, we consider here a combined approach that incorpo-
rates both full-spectrum fluorescence analysis, and transmission imaging using absorption and
phase contrast, as part of an optimization-based approach to fluorescence tomography analysis
by using a complete forward model of the x-ray imaging process.
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Fig. 1: Top view of the geometry used in x-ray fluorescence microscopy. The x-ray beam is
treated as a pencil beam in the z direction that is raster-scanned across the specimen in 1D in
the x direction, and the specimen is then rotated before another image is acquired (successive
2D planes are imaged by motion of the 3D specimen in the y direction, into/out of the plane
of this top view). The x-ray transmission signal (absorption or phase contrast) is recorded,
and the x-ray fluorescence (XRF) signal is recorded over an angular range of Q, by using an
energy dispersive detector located at 90° to the beam, in the direction of the elastic scattering
minimum for a horizontally polarized x-ray beam. The grid overlay on the specimen shows its
discretization with a pixel size of L,; the set of pixels (in 2D; voxels in 3D) through which the
XREF signal might undergo self-absorption in the specimen is indicated in orange.

2. Fluorescence Self-Absorption

We begin with a simple illustration of self-absorption. Consider a specimen that consists of a
200 pum diameter borosilicate glass cylinder with a 10 um diameter tungsten wire off to one
side, and a 10 um gold wire off to another side (Fig. 2). The borosilicate glass was assumed
to consist of 81% SiO,, 13% B,0s3, 3.5% Nay0, 2% Al,03, and 0.5% K,O, with a density of
2.23 g/cm?. If a chromatic x-ray focusing optic like a Fresnel zone plate is used to produce the
x-ray pencil beam, a monochromatic x-ray beam should be used for scanning and its energy
might be set to 12.1 keV to be well-separated in energy from the Au LS fluorescence line at
11.4 keV. As the specimen is rotated, one obtains x-ray transmission (XRT) sinograms based
on the attenuation of 12.1 keV x rays in Si, W, and Au as shown at right in Fig. 2. The situation
with the x-ray fluorescence (XRF) signal is different; when the x-ray beam is at the right edge
of the Si cylinder, the Si Ko x-rays with 1.74 keV photon energy will have to traverse nearly
200 um of Si before they reach the XRF detector located at left (Fig. 1). Since Table 1 shows
that the absorption length of 1.74 keV x-rays is 1.66 um in glass, the fraction of the signal
reaching the XRF detector is only exp[—200/1.66] ~ 5 x 1073 so that essentially none of the
Si XRF signal is detected in this case. In fact, only the Si XRF signal from the side nearest to
the XRF detector is registered, so that from the Si XRF signal one cannot distinguish between
a solid Si cylinder versus one that is hollowed out as shown in the bottom row of Fig. 2. The
Au and W XREF signals can better traverse through the Si cylinder to reach the XRF detector,
and moreover the 12.1 keV incident beam is also only partly absorbed so by combining all of
these signals one can indeed distinguish between a solid and hollow Si cylinder.

Several methods have been used to correct for the self-absorption effect, including earlier
approaches used for radionuclide emission tomography [19-21]. If one can measure the trans-



Absorption length
! for material

(units: um)
X-ray line keV Si glass W  Au
Si Koy 1.740 | 12.3 1.66 042 035
W Loy 8398 | 80.7 5044 3.53 290
W LB 9.672 | 122.1  76.81 5.09 4.20
Au Loy 9.713 | 123.7  77.79 5.15 4.24

Au LB, 11.442 | 200.7 127.04 3.13 6.51
Incident 12.100 | 236.9 150.36 2.46 3.02

Table 1: X-ray absorption lengths pt ! for silicon (Si), a borosilicate glass with a composition
described in Sec. 2, tungsten (W), and gold (Au) at the energies of selected x-ray fluorescence
lines (see also the spectrum in Fig. 10) and also for an incident x-ray energy of 12.1 keV.
As can be seen, Si x-ray fluorescence in particular will be strongly self-absorbed according to
the Lambert-Beer law of I = [yexp|[—u¢] for a material of thickness 7. The x-ray attenuation
coefficient £ for element e at x-ray energy E is just the inverse of the absorption length.

mission sinograms of the specimen at the energies of all x-ray fluorescence lines, it is possible
to correct for self absorption [22]. However, this approach is exceedingly difficult to realize
experimentally, since a large number of x-ray fluorescence lines are present in many specimens
(see Fig. 10) and one would need to collect a transmission tomography dataset at each of these
energies. In the case of uniform absorption and illumination at a single x-ray energy, analyt-
ical approaches have been developed [23,24] and these have been shown [14] to provide a
good starting point iterative methods we now describe. One approach is to use algebraic (rather
than filtered back projection) reconstruction methods to better handle limited rotational sam-
pling, and least-squares fitting to better handle quantum noise [25]; other approaches have used
ordered-subsets expectation maximization [26]. In more recent work, optimization approaches
have been introduced where the transmission tomography data at a single x-ray energy was used
to estimate the absorption at all x-ray fluorescence energies using the fact that (in the absence
of x-ray absorption edges) x-ray absorption scales in a power-law relationship with x-ray en-
ergy [27-29]. One can also add the Compton scattered signal as another measurement of overall
specimen electron density, and use the tabulated absorption coefficients uZ of all elements e at
each fluorescence energy E [30]. Other approaches classify the specimen as being composed of
a finite number of material phases for the calculation of self-absorption [31]. The optimization
approaches in particular serve as inspiration for our approach, which we believe is unique in
combining both full-spectrum analysis and transmission imaging along with fluorescence.

We begin by briefly describing the mathematical “forward models” of XRF and XRT. Next,
we detail our joint reconstruction approach and the formulation of the objective function and
corresponding optimization algorithm. We then discuss choices of scaling parameters in the
numerical implementation of the algorithm and present the performance of our joint inversion
compared with existing approaches on real datasets.

3. Mathematical Model
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Fig. 2: Illustration of the x-ray fluorescence self-absorption effect, and how x-ray transmission
can be used to recognize and correct for it. We show here a specimen composed of cylinders,
or circles in this top view. The largest is of borosilicate glass (composition described in Sec. 2)
with 200 um diameter, followed by tungsten (W) with 10 um diameter, and gold (Au) with 10
um diameter. As 1D scans in beamlet positions T are collected at successive specimen rotation
angles 6, one builds up sinograms or (7, 8) views of elemental x-ray fluorescence (XRF) signals
such as the Si XRF signal shown in the middle, as well as 12.1 keV x-ray transmission (XRT)
sinograms as shown at right (based on absorption contrast; phase contrast images can also be
used). If there is no self-absorption of the fluorescence signal, one obtains a Si XRF sinogram
as shown in the top row, where the incident x-ray beam is partially absorbed in the small W
and Au wires as they rotate into positions to intercept the incident beam before it reaches the
glass cylinder. However, the 200 um diameter glass cylinder is large compared to the 1.66 um
absorption length u~! of Si Koy x-rays in the glass as shown in Table 1, so that a fraction
1 —exp[—200/1.66] ~ 1 —5 x 10733 of the Si XRF signal will be self-absorbed in the rod.
As a result, the Si XRF signal will be detected mainly when the incident beam is at the left
side of the scan; this leads to the Si XRF sinogram shown in the middle row (the sinogram
also shows absorption of the Si XRF signal in the W and Au wires as they rotate through
positions where they partly obscure the XRF detector’s view of the Si cylinder). In the bottom
row we show the case where the glass cylinder is hollow, with a wall thickness of 30 yum that
is nevertheless large compared to the 1.66 pm absorption length of Si XRF photons; in this
case the Si XRF sinogram is almost unchanged, but the XRT sinogram is clearly different. By
using the combined information of the fluorescence (XRF) and transmission (XRT) sinograms,
one can in principle obtain a better reconstructed image of the specimen in the case of strong
fluorescence self-absorption.




We start from an earlier approach [32], which we extend considerably here. We use 6 € ® and
T € 7 to denote, respectively, the index of the x-ray beam angle and discretized beamlet from
a collection of |@| angles and |.77| beamlets. The set ¥ denotes the collection of |¥| spatial
voxels used to discretize the reconstructed sample. By L = [Lf ’T], we denote the intersection
lengths (in cm) of beamlet (6, 7) with the voxel v € ¥". We use & to denote the collection of |&|
possible elements and uZ to denote the mass attenuation coefficient (in cm?g~") of element e
at beam incident energy E. Our goal is to recover # = [#;,], the concentration (in gcm™?) of
element e in voxel v.

3.1. XRT Imaging Model

A conventional way (see, e.g., [33]) to model the XRT projection FQT . (in counts/sec) of a
sample from beamlet (0, 7) is

Fg (") —Ioexp{ ZL" E} 3.1)

where Iy is the incident x-ray intensity (in counts/sec) and i = [AE] is the linear attenuation
absorption coefficient (in cm~!) at incident energy E.
To better explore the correlation of XRF and XRT and to link these two data modalities by the
common variable #, we note that the coefficients fi” depend on # by way of pE=y e uE.
e

Incorporating this fact in Eq. 3.1, we obtain a new XRT forward model based on #

Fy(#) =Ihexp { -y Lituk W} : (3.2)

v,e

To obtain a simple proportional relationship, we divide both sides of Eq. 3.2 by Iy and then take
the logarithm to obtain the XRT forward model used in this work:

Fo(#) =Y LU W e,

We similarly take the logarithm of the raw XRT sinograms used in this paper.

3.2.  XRF Imaging Model

Our discrete model follows an elemental approach, in the sense that we model the XRF energy
emitted from a single elemental atom by its corresponding elemental unit spectrum. Then,
justified by the fact that photon counts are additive, the total XRF spectrum detected from the
given sample is estimated as a weighted sum of the unit spectra of the elements being recovered.

First, we model the net XRF intensity /. ¢y, which corresponds to the characteristic XRF
energy E, emitted from element e, by Sherman’s equation [34] up to first order (i.e., neglecting
effects such as Rayleigh and Compton scattering):

1
Ie.[,s = IOCewe,i (1 - _) IigE, (3.3)
Tes

where ¢, is the total concentration of element e (¢, = 1 in the case of our unit spectra), @, ¢ is
the XRF yield of e for the spectral line ¢, and r, 5 is the probability that a shell s electron (rather
than other shell electrons) will be ejected.

In our calculations, the quantity @, ¢ (1 — i) uE is approximated by the XRF cross sec-
tions provided from xraylib [35]. Next, we convert the intensity to a spectrum by incorporating



the practical experimental environment. Given an energy-dispersive XRF detector with energy

channels x;,i = 1,...,|.#|, we define an indicator function
1 if |xi—Ee|:mjn(|xjng|) and xi;«éZEe—xi,l
[1E,)i = . J (3.4
0 otherwise.

Then we have the ideal, delta-function peak I}, = I,; ;1% . In practice, because of the detector
energy resolution [2], discrete x-ray lines get broadened by a Gaussian distribution with a stan-

dard deviation ¢. The resulting unit spectrum of element e is thus given by M, = ¥ M, /s,
lys

_ 1 —x?
Me,é,s - :g? ! (y( i’(,l,S) @9 <% eXP{Tﬂ})) (35)

and where ® denotes pointwise (Hadamard product) multiplication and .% (#~!) is the (in-
verse) Fourier transform. To simplify the model, we consider only the K¢, Kg, Lq, Lg, and Mg
lines as tabulated [36].

We then model the total XRF spectrum of a sample with multiple elements by explicitly
considering the attenuation of the beam energy and the self-absorption effect of the XRF energy.
We represent the attenuation experienced by beamlet (6, 7) (at incident beam energy E) as it
travels toward voxel v by

where

.0, ~Er0, 0,
A\E’ T(W) = exp { - Z“ELV/'THV/GQ/Q‘T} = exp {_ ZZW\/, e.uVe L THV E%H‘T} 5 (36)
v v Ve v

where Iy is the indicator (Dirac delta) function for the event X and %9’7 is the set of voxels
that are intersected by beamlet (0, 7) before it enters voxel v.

We let Pfe’r(ﬂ/) be the attenuation of XRF energy emitted from element e at voxel v by
beamlet (0, 7). To reduce the complexity of the calculation, instead of tracking all the emitted
photons isotropically, we consider only the emission from the region €. This region is the part
of the sample discretization that intersects the pyramid determined by the centroid of the voxel
v and the XRF detector endpoints; see Fig. 1 for a 2D illustration. In a slight abuse of notation,
we let v/ € Q, indicate that the centroid of voxel v is contained in the region €,. Then the
self-absorbed XRF energy is approximated by

0,7 _ o (Qv)
Pv,e (W) = eXp{ Z ZW\/ e/,ue/ —|{v,, VeQ }‘ } 3.7

Ve, e

where a(Q) is the volume of Q (or area of Q for a 2D sample) and ,ufe is the linear attenuation
coefficient of element ¢’ at the XRF energy E, of element e. Accordingly, the fluorescence spec-
trum Fg_’T (in counts/sec) of the sample resulting from beamlet (6, 7) is the |.#|-dimensional
vector

F.0) =Y (ZLfvafﬁvf<W>P£f(7//>%e) M.

e v

4. Optimization-Based Reconstruction Formulations and Algorithms

We take Dgr € R and Dg’r € R”! to denote the experimental data for XRT and XREF, re-
spectively. We now solve reconstruction problems involving the models F(f (#) and FgﬂT(W).
Given that both these data sources are derived from measured photon counts, we follow a max-
imum likelihood approach that assumes the measurements are subject to independent Poisson



noise [37,38]. First, we take a logarithm of D~ and work with Dg . = ln(DT /1Ip). Maxi-
mizing the likelihood (derived in App. A) for our joint inverse problem then can be written as

ming g ¢(#), (4.8)
where the non-negativity constraint # > 0 is enforced to respect the physical nature of mass;
o) = o'W ) + ¢ ( ) . . . .
= Z( (F (W))De,r) +ﬁ12(F9,T(W)_ln (FB.T(W)) ﬁ2D9,r) >
0,7 0,7

¢% and @7 correspond to the XRF and XRT objective terms, respectively; and B; > 0, 8, > 0
are scaling parameters. The scaling parameter 3; balances the ability of each modality to fit the
data, and 3, detects the relative variability between the data sources D - and Dg o~

Advances in x-ray sources, optics, and detectors mean that the datasets to be analyzed can
be large; thus, having a fast and memory-efficient algorithm to solve (4.8) is highly desirable.
Therefore, we apply an alternating direction approach described in Alg. 1. In this approach,
instead of directly minimizing Eq. 4.8, we first solve an “inner iteration” subproblem:

miny > o'¥), 4.9)

with
O (#)= YorXenLll"AVOTHHPEIH )W M,
Ko eln (Lo LAV (W OPEE W)WM, ) DS

+B1 X0 (F§.0#)~n (FL.0#)) D} ).

and where A(#') and P(#") are fixed given the current solution # at the “outer” iteration i
of Alg. 1.

To approximately solve Eq. 4.9, we adapt a form of the inexact truncated Newton (TN)
method in [39]. We write TN as a function of the form

WL =TN(' (W), W' k),

which applies k iterations of TN to the problem in Eq. 4.9 with initial guess % to obtain #/+1.
In particular, we use a bound-constrained preconditioned conjugate gradient method to obtain
the search direction, followed by a backtracking line search (see Alg. 2) to obtain the next
iterate #'!. The process is repeated until desired stopping criteria are satisfied; in Alg. 1 we
repeat until consecutive iterates are within a user-specified distance € of one another. Since the
focus of this work is to show the potential of joint inversion with multimodal data, future work
will address convergence analysis of Alg. 1.

5. Experimental Reconstruction



Algorithm 1 Algorithm for Solving Joint Inversion with Linearized XRF Term.

1: Given tolerance € > 0 and initial #°; initialize iteration counter i = 0.

2: repeat

s AP =FS (),

4 WTL=TN(¢'(#),#" 50).

5 Compute the search direction ¢/ = #'+! — @',

6: Use backtracking line search o = LIN_.NAIVE(e!,#,¢,1) (see Alg. 2) to obtain
W =# +ae

7 i—i+1.

s until | —#|| <e

Algorithm 2 Backtracking Line Search

1: procedure ot = LIN_NAIVE(d, X, f, Ctnax )

2 repeat

3: Olmax < 23

4 until f(x+ omaxd) < f(x), then & = Otmax
5: end procedure

We now demonstrate the benefit of the proposed joint inversion approach by using experi-
mental data. We constructed a simple test sample consisting of a borosilica glass rod with a
composition as described in Sec. 2, wrapped with a a W wire of 10 um diameter, and a Au wire
of 10 um diameter. This test specimen was scanned by an incident beam energy of 12.1 keV at
beamline 2-ID-E at the Advanced Photon Source at Argonne National Laboratory. Each projec-
tion was acquired by raster scanning with a 200 nm scanning step size and 73 scanning angles
over an angular range of 360 °. At each scanning step, the transmission signal was acquired by
using a segmented photon diode located downstream of the sample, while the fluorescence sig-
nals were collected by using an energy-dispersive detector (Vortex ME-4) located at 90° relative
to the incident beam, covering an energy range of 0-20 keV with 2,000 energy channels. The
final XRT data contains 73 projections with each slice involving 1,750 x 51 pixels, leading to
a total data set of dimension 73 x 1,750 x 51 x 2,000.

As expected from the attenuation lengths given in Table 1 and the simulations shown in
Fig. 2, this dataset shows strong self-absorption in the Si fluorescence measurements. We com-
pare our reconstruction result with the output of TomoPy 0.1.15 [40], a widely used tomo-
graphic data-processing and image reconstruction library. TomoPy takes the elemental concen-
tration map decomposed from the raw spectrum by the program MAPS 1.2 [12] for improved
photon statistics compared with the raw data. The MAPS program fits the full energy spectrum
recorded at each scan to a set of x-ray fluorescence peaks plus background signals, and it returns
a 2D dataset corresponding to a certain elemental concentration per scan. Figure 3 shows three
elemental XRF sinograms of interest as calculated by this approach. Within TomoPy, we used
a maximum likelihood expectation maximization algorithm to reconstruct the three sinograms
separately. All numerical experiments are performed on a platform with 1.5 TB DDR3 memory
and four Intel E7-4820 Xeon CPUs.

For the purposes of algorithm testing with reduced computational cost, we reconstructed only
a 2D middle slice (x,z) of the 3D glass rod dataset (x,y,z). For each angle, we summed together
9 adjacent y slices of both XRF spectra and XRT measurements as the input experiment data.
Therefore, in our illustration, |0| = 73, |7| = 196, and || = (|t| — 1) x (|7] — 1).
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Fig. 3: Relative elemental concentrations obtained from a MAPS-based fit of the raw x-ray
fluorescence data for the glass rod sample. Due to the imperfection of fitting and background
rejection (which might be able to be corrected with additional expert input), the decomposed
elemental concentrations show certain artifacts, where certain elemental sinograms pick up
other elements’ signals. For example, according to the ground truth, we know that Si exists
only in the rod part with a cylinder shape; but its corresponding sinogram shows that it also
exists in the two wires, which is caused by imperfect data fitting. Those two extra waves are
actually picked up from Au and W signals because certain emission lines of Au and W overlap

those of Si.
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Fig. 4: Experimental sinograms. Left: mean (across energy channels) value of XRF raw spec-
trum; Right: XRT sinogram. Based on the different magnitudes of these two datasets, we choose
B> = 10 as the scaling parameter to balance the measurement variability of the two data sources,
so that both measurements have maxima near 10 in their respective units. As a result, the rela-
tive variability of the two detectors between the data sources is mitigated.
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Fig. 5: Method for choosing the parameter 8, that appears in the cost function of Eq. 4.8. (a):
XRF objective value ¢® versus XRT objective value ¢ given different values B;, with fixed
B> = 10. The curve displays the tradeoff between these two modalities. (b): The curvature from
successive points in Fig. (a); the point with maximum curvature occurs at §; = 1.

5.1.  Selection of B Values

Next, we explain one way to select values for §; and f3, for use in the objective in Eq. 4.8.
We recall that the effect of 3, is to balance the magnitudes of the XRF and XRT measurement
data, and that its exact value is not critical. Therefore, according to the magnitude difference
of two data sources shown in Fig. 4, we chose to use 3, = 10 to balance this difference so
that both measurements have maxima near 10 in their respective units. The selection of B is
accomplished by applying the so-called L-curve method [41]. In Fig. 5a, we plot the L-curve
defined by the curve of XRT terms ¢” versus XRF terms ¢F obtained from solving Eq. 4.8
with different §; values. This curve displays the tradeoffs between these two modalities and
provides an aid in choosing an appropriate balancing parameter 3;. The curvature, defined as
the curvature of a circle drawn through three successive points on the L-curve, is calculated and
plotted in Fig. 5b. As suggested by [41], we choose the point on the L-curve with the maximum
curvature; according to Fig. 5, this is f; = 1. Consistently, Fig. 9 shows the reconstructed
elemental maps corresponding to different 31, and B; = 1 returns the results that are closest to
the ground truth.

5.2.  Joint Inversion Results

Given #° = 0 as the initial guess for the joint inversion, Fig. 6 shows the reconstruction result
for each element by using Alg. 1 with € = 107°. In particular, Fig. 7 shows the performance of
the inner iteration by TN to reduce both the XRF and XRT objective values. Correspondingly,
Fig. 8 shows the reconstructed result of each outer iteration of Alg. 1. The reconstructed elemen-
tal maps show the benefits of our joint inversion mainly from two perspectives. First, because
of the imperfections of spectral fitting and background rejection, the decomposed elemental
concentrations show certain artifacts—which we call the “shadow effect”—where certain ele-
mental sinograms pick up other elements’ signals. For example, according to the ground truth,
we know that Si exists only in the rod part with a cylinder shape; but its corresponding sino-
gram from MAPS, shown in Fig. 3, shows that it also exists in the two wires, which is caused
by imperfect data fitting. Those two extra waves are actually picked up from Au and W signals
because certain emission lines of Au and W overlap those of Si. As a result, the reconstruction
from TomoPy based on these decomposed sinograms will contain the “shadow points,” which



0.25

+ 5
L3
< g 0.2
= B '
0.15
[
=
<
0.1
- 0.05
g
o
2
0

Fig. 6: Comparison of reconstruction results for MAPS+TomoPy, XRF alone, and joint recon-
struction, respectively, given an initial guess of all zeros, B; = 1, and 3, = 10. Every elemental
map is rescaled to the range [0,0.25]. It is clear that the joint reconstruction returns the best re-
sult from two perspectives: first, the glass rod is filled with Si; and second, the “shadow effect”
is dramatically mitigated for the reconstruction of Si and W.
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Fig. 7: Convergence of TN for each inner iteration j, given a maximum number of inner it-
erations as 50, f; = 1, and 3, = 10. We can see that along the iterations, TN is reducing the
objective function so that the forward model fits better and better to the given data.
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Fig. 8: Solution for each outer iteration i, given (f1, ;) = (1,10). At iteration i = 3, Alg. 1
reaches its stopping criterion in the sense that the solution does not change anymore. It also
indicates that our alternating algorithm is very efficient to converge to the solution within only
a few iterations.
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Fig. 9: Reconstruction results (given 3, = 10) for different 3; values. The results are consistent
with the L-curve plotted in Fig. 5: B; = 1 returns the solution set closest to the ground truth.
Therefore, with a reasonable 3; provided by the L-curve method, the joint reconstruction is
able to return a dramatic improvement on the reconstruction quality.



are shown as two small dots around Si and a dot in the W map in the left bottom corner of
Fig. 6. Comparing the results from XRF single inversion using our forward model with the To-
moPy output, we see that our forward model is able to better distinguish the different elemental
signals; that is, the “shadow effect” is greatly mitigated. Furthermore, by introducing the XRT
modality into the reconstruction, the joint inversion not only suppressed the artifacts from the
“shadow effect” and the strikes introduced by the misalignment between projections but also
more accurately recovered Si by filling the inside of the cylinder and thereby correcting the
self-absorption effect. Also, we provide a quantity evaluation of our reconstruction. We simu-
late the XRF spectrum based on the reconstructed elemental composition and compare it to the
real experimental data as shown in Fig. 10. We can see that, except the background region that
our forward model does not include to simulate, the essential peaks corresponding to the main
elements we are interested to cover agree very well with the experimental data. This compari-
son indicates that not only our joint reconstruction improves the solution from a visualization
perspective, but also from quantification point of view. Furthermore, it indicates a satisfying
accuracy of our XRF forward model.

6. Conclusion
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Fig. 10: Example x-ray fluorescence spectrum. In this case, an incident beam with a photon en-
ergy of 12.1 keV is used to excite x-ray fluorescence from a specimen consisting of a borosil-
icate glass cylinder comprised mainly of SiO, but with other elements present, and tungsten
(W) and gold (Au) wires. The experimental spectrum is averaged over all positions of a sino-
gram from one scan row. The simulated spectrum based on the reconstructed elemental map
is generated by the forward model described in Sec. 3; it includes tabulated [35] x-ray fluores-
cence lines for all elements present in the specimen along with the Gaussian energy response
of the fluorescence detector, plus the background spectrum from non-specimen areas. Some
additional background is present in the 4-7 keV energy range due to the materials in the exper-
imental apparatus as indicated at specific fluorescence peaks; because this background does not
change whether or not a specimen region is illuminated, it does not affect our analysis.



Guided by the multimodal analysis methodology developed in [32], we apply a joint-
inversion framework to solve XRF reconstruction problem more accurately by incorporating
a second data modality as XRT. We investigate the correlations between XRF and XRT data,
and establish a link between datasets by reformulating their models so that they share a com-
mon set of unknown variables. We develop an iterative algorithm by alternatively maximizing a
Poisson likelihood objective to estimate the unknown elemental distribution, and then updating
the self-absorption term in the forward model. The numerical results presented in the paper
show that when facing strong self-absorption effects, significant improvements are achieved by
performing joint inversion. Furthermore, because of the improved accuracy provided by our
XRF forward model, the artifacts arising from the “shadow effect” are greatly mitigated.
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A. Maximum Likelihood Derivation

We assume that the measurement data are independent and that each measurement D follows
a Poisson distribution with mean F;(#"). The likelihood for any D; is then

Dy W) = Prix — ) — D gﬁf{—Fj(W)},
!

By the assumed independence of the measurements, the joint likelihood is [T f(D;j; Fj(#)).
J

The problem of maximizing the log likelihood is thus

m;/lx ln(I;[f(Dj;Fj(W)))
= )j:,ln(f(Dj?Fj(W)))

— ¥hn (F.;(W)Df exp{—F,;(W)})

- D;!
j J

= g(ln(Fj(W)Df) +1In(exp{—Fj(#)}) —In(D;!)) .

Since each D is a scalar (independent of #), it is therefore equivalent to solve

max  y(#) =L (D;In(F;(#)) — Fi(¥)). (A.10)
J
Our approach requires first-order derivatives, which are easily derived in the Poisson noise

setting. For a particular (voxel v, element e) pair, the first-order derivative of (A.10) with respect
to the concentration %, is

D.
) =L (5~ 1) V)

The calculation of the remaining derivatives %F i(#') is described in our previous paper [32].
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